This book introduces students to optimization theory and its use in economics and allied disciplines. The first of its three parts examines the existence of solutions to optimization problems in Rn, and how these solutions may be identified. The second part explores how solutions to optimization problems change with changes in the underlying parameters, and the last part provides an extensive description of the fundamental principles of finite- and infinite-horizon dynamic programming. A preliminary chapter and three appendices are designed to keep the book mathematically self-contained.
The 2006 INFORMS Expository Writing Award-winning and best-selling author Sheldon Ross (University of Southern California) teams up with Erol Peköz (Boston University) to bring you this textbook for undergraduate and graduate students in statistics, mathematics, engineering, finance, and actuarial science. This is a guided tour designed to give familiarity with advanced topics in probability without having to wade through the exhaustive coverage of the classic advanced probability theory books. Topics include measure theory, limit theorems, bounding probabilities and expectations, coupling and Stein's method, martingales, Markov chains, renewal theory, and Brownian motion. No other text covers all these advanced topics rigorously but at such an accessible level; all you need is calculus and material from a first undergraduate course in probability.
Graph theory experienced a tremendous growth in the 20th century. One of the main reasons for this phenomenon is the applicability of graph theory in other disciplines such as physics, chemistry, psychology, sociology, and theoretical computer science. This textbook provides a solid background in the basic topics of graph theory, and is intended for an advanced undergraduate or beginning graduate course in graph theory.
This second edition includes two new chapters: one on domination in graphs and the other on the spectral properties of graphs, the latter including a discussion on graph energy. The chapter on graph colorings has been enlarged, covering additional topics such as homomorphisms and colorings and the uniqueness of the Mycielskian up to isomorphism. This book also introduces several interesting topics such as Dirac's theorem on k-connected graphs, Harary-Nashwilliam's theorem on the hamiltonicity of line graphs, Toida-McKee's characterization of Eulerian graphs, the Tutte matrix of a graph, Fournier's proof of Kuratowski's theorem on planar graphs, the proof of the nonhamiltonicity of the Tutte graph on 46 vertices, and a concrete application of triangulated graphs.
This text prepares readers for fluency with analytic ideas, such as real and complex analysis, partial and ordinary differential equations, numerical analysis, fluid mechanics, and differential geometry. This book is designed to challenge advanced readers while encouraging and helping readers with weaker skills. Offering readability, practicality and flexibility, Wade presents fundamental theorems and ideas from a practical viewpoint, showing readers the motivation behind the mathematics and enabling them to construct their own proofs.
The second of a three-volume work, this is the result of the authors'experience teaching calculus at Berkeley. The book covers techniques and applications of integration, infinite series, and differential equations, the whole time motivating the study of calculus using its applications. The authors include numerous solved problems, as well as extensive exercises at the end of each section. In addition, a separate student guide has been prepared.
The third of a three-volume work, this book is the outgrowth of the authors' experience teaching calculus at Berkeley. It covers multivariable calculus and begins with the necessary material from analytical geometry. It goes on to cover partial differention, the gradient and its applications, multiple integration, and the theorems of Green, Gauss and Stokes. The authors motivate the study of calculus using its applications. Features many solved problems and extensive exercises.
This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science.
This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems.
The essential introduction to discrete and computational geometry
Covers traditional topics as well as new and advanced material
Features numerous full-color illustrations, exercises, and unsolved problems
Suitable for sophomores in mathematics, computer science, engineering, or physics
Rigorous but accessible
An online solutions manual is available (for teachers only). To obtain access, please e-mail: [email protected]
"Discrete Mathematics and its Applications, Sixth Edition", is intended for one- or two-term introductory discrete mathematics courses taken by students from a wide variety of majors, including computer science, mathematics, and engineering. This renowned best-selling text, which has been used at over 500 institutions around the world, gives a focused introduction to the primary themes in a discrete mathematics course and demonstrates the relevance and practicality of discrete mathematics to a wide variety of real-world applications...from computer science to data networking, to psychology, to chemistry, to engineering, to linguistics, to biology, to business, and to many other important fields.
Comprehensive in coverage, this book explores the principles of logic, the axioms for the real numbers, limits of sequences, limits of functions, differentiation and integration, infinite series, convergence, and uniform convergence for sequences of real-valued functions. Concepts are presented slowly and include the details of calculations as well as substantial explanations as to how and why one proceeds in the given manner. Uses the words WHY? and HOW? throughout; inviting readers to become active participants and to supply a missing argument or a simple calculation. Contains more than 1000 individual exercises. Stresses and reviews elementary algebra and symbol manipulation as essential tools for success at the kind of computations required in dealing with limiting processes.
A new edition updated to meet the needs of the Pure Mathematics encountered in all the new specifications for single-subject A Level Mathematics. This major text is clearly set out with an excellent combination of clear examples and explanations, and plenty of practice material - ideal for supporting students who are working alone. The first two chapters are vital in preparing new students, particularly those with a Grade C at GCSE, for the rigours of A Level. Each chapter concludes with a selection of exam-style questions, giving students lots of practice for the real thing!
This classic book retains its outstanding ongoing features and continues to provide readers with excellent background material necessary for a successful understanding of mathematical statistics. Chapter topics cover classical statistical inference procedures in estimation and testing, and an in-depth treatment of sufficiency and testing theory—including uniformly most powerful tests and likelihood ratios. Many illustrative examples and exercises enhance the presentation of material throughout the book. For a more complete understanding of mathematical statistics.
A fresh approach to introductory topology, this volume explains nontrivial applications of metric space topology to analysis, clearly establishing their relationship. Also, topics from elementary algebraic topology focus on concrete results with minimal algebraic formalism. The first two chapters consider metric space and point-set topology; the second two, algebraic topological material. 1983 edition. Solutions to Selected Exercises. List of Notations. Index. 51 illustrations.
This classic, calculus-based introduction to the theory and application of statistics provides an unusually comprehensive depth and breadth of coverage and reflects the latest in statistical thinking and current practices. New to this edition is the addition of an applications section at the end of each chapter that deals with the theory presented. Further emphasis has been placed on the use of computers in performing statistical calculations. Topics covered include probability distributions and densities, random variables, sampling distributions, hypothesis testing, regression and correlation, variance, and more. An excellent reference work for professional statisticians in a variety of fields.
Clear explanations, examples and a wealth of exercises are the hallmark of the Revision and Practice approach. Now you can find these same features in one book for Key Stage 3. The book draws many of its exercises from the "Curriculum Mathematics Practice" series, with new material added where necessary. To make it easy to use, work is arranged by National Curriculum level within each attainment target. Its features include: 100 actual National Test questions set out in three clear sections to illustrate the style of questions over the last few years, plenty of opportunities to practise skills in a particular attainment target at a particular level, and numerical answers in a separate answer book.
Lebesgue Integration On Euclidean Space Contains A Concrete, Intuitive, And Patient Derivation Of Lebesgue Measure And Integration On Rn. Throughout The Text, Many Exercises Are Incorporated, Enabling Students To Apply New Ideas Immediately. Jones Strives To Present A Slow Introduction To Lebesgue Integration By Dealing With N-Dimensional Spaces From The Outset. In Addition, The Text Provides Students A Thorough Treatment Of Fourier Analysis, While Holistically Preparing Students To Become Workers In Real Analysis.
With a highly applied and computational focus, this book combines the important underlying theory with examples from electrical engineering, computer science, physics, biology and economics. An expanded list of computer codes in an appendix and more computer-solvable exercises in the text reflect Strang?s interest in computational linear algebra. Many exercises appear in the sections and in the chapter reviews. Exercises are simple but instructive.
This book has two fundamental objectives: (1) to carefully motivate and explain the basic ideas underlying linear programming and (2) to apply these ideas to a wide variety of mathematical models. In order to achieve these objectives, the authors provide more than the usual number of examples and offer clarity of presentation over abstraction. Students will be able to grasp readily the material presented and apply the material to a number of challenging problems.